Convergence Theorems of Iterative Schemes For Nonexpansive Mappings
نویسندگان
چکیده
منابع مشابه
Weak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings
The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...
متن کاملConvergence Theorems for -Nonexpansive Mappings in CAT(0) Spaces
In this paper we derive convergence theorems for an -nonexpansive mappingof a nonempty closed and convex subset of a complete CAT(0) space for SP-iterative process and Thianwan's iterative process.
متن کاملConvergence theorems for nonself asymptotically nonexpansive mappings
In this paper, we prove some strong and weak convergence theorems using a modified iterative process for nonself asymptotically nonexpansive mappings in a uniformly convex Banach space. This will improve and generalize the corresponding results in the existing literature. Finally, we will state that our theorems can be generalized to the case of finitely many mappings. c © 2007 Elsevier Ltd. Al...
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF ADVANCES IN MATHEMATICS
سال: 2017
ISSN: 2347-1921
DOI: 10.24297/jam.v12i12.1074